How microbes could sustainably increase crop production

  • Researchers in Singapore are studying how high-tech urban farmers can produce more crops with fewer chemical fertilisers.
  • They analyzed microbes from common Asian vegetable plants and their genetic material in the soil, using a technique called metagenomics.
  • Using a supercomputer to collect data, they discovered microbes which could benefit the vegetables by providing nutrients, stimulating growth, and suppressing pathogens.
  • The team plans to build on this research in future in order to cultivate these microbes which could sustainably improve crop production and increase food security.

New research identifies nearly 300 species of microorganisms that grow together with common Asian vegetables.

For vegetables to grow well, it is not enough to just give them sunlight and water; They need a whole community of microorganisms to help them grow healthily.

The finding is the first step towards helping high-tech urban farmers produce more crops with less chemical fertilizers.

Currently, what little is known in this field of research has been garnered mostly from standard plant species used in experiments, and they are not vegetables. To address this gap, the team from the National University of Singapore collaborated with a commercial urban farm in Singapore.

They obtained soil samples, as well as both the seedlings and mature plants of three common Asian vegetables: choy sum, kai lan, and bayam (also called Chinese flowering cabbage, Chinese broccoli/Chinese kale, and Chinese spinach, respectively). The team extracted the microbes and their genetic material in the soil and on the plants for analysis.

Green leafy vegetables are nutrient-dense and packed with bioactive compounds known for promoting human health,” says study leader Sanjay Swarup, associate professor in the biological sciences department.

“These leafy greens are short-cycle crops, suitable for adoption in various farming formats. Focusing our research priorities on this food group will address food and nutritional security and cater to both quantity and quality aspects of food production.”

The researchers sequenced the genetic material in the samples using a technique called metagenomics. It uses computational methods to analyze the diversity and characteristics of the genetic material without having to isolate and culture individual species of microorganisms. This method gave them a comprehensive picture of the microbial community in less time and with less effort.

Using a supercomputer, the researchers identified almost 300 species of bacteria and a group of single-celled, bacteria-like organisms known as archaea. From the data, they found that the microbes could potentially benefit the vegetables by providing nutrients, stimulating growth, and suppressing pathogens. The findings of the four-year study appear in the journal Scientific Data.

Two billion people in the world currently suffer from malnutrition and according to some estimates, we need 60% more food to feed the global population by 2050. Yet the agricultural sector is ill-equipped to meet this demand: 700 million of its workers currently live in poverty, and it is already responsible for 70% of the world’s water consumption and 30% of global greenhouse gas emissions.

New technologies could help our food systems become more sustainable and efficient, but unfortunately the agricultural sector has fallen behind other sectors in terms of technology adoption.

Launched in 2018, the Forum’s Innovation with a Purpose Platform is a large-scale partnership that facilitates the adoption of new technologies and other innovations to transform the way we produce, distribute and consume our food.

With research, increasing investments in new agriculture technologies and the integration of local and regional initiatives aimed at enhancing food security, the platform is working with over 50 partner institutions and 1,000 leaders around the world to leverage emerging technologies to make our food systems more sustainable, inclusive and efficient.

Learn more about Innovation with a Purpose’s impact and contact us to see how you can get involved.

“We have seen how food supply chains are adversely impacted by the COVID-19 pandemic. Therefore, we need urgent reformative actions to build greater food resilience and security. Through this study, we are taking the first step towards building innovative solutions to boost local production in a highly sustainable manner,” says Pavagadhi Shruti, the senior manager of the team who led the field sampling and laboratory work.

Building upon their research, the team will be conducting detailed studies to identify the best microbial strains for enhancing crop production. They also hope their findings will encourage further research to understand how micro-organisms enhance crop growth and find new ways to cultivate these micro-organisms.

Research fellow Aditya Bandla led the computational work for the study.